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Inlioduction^ 

The linear programs considered here are of the form: 

Maximize   (c,x) 

(LP) subject to 

a § Ax  r b 

where   A    is of full row  rank,  and (JLP) ie fpauihio with bonndcr) optimal solu- 

tions. 

The main result,   equation (24),   is an explicit representation of the 

general optimal eolution of (LP),  in terms of a generalized inverse of A-' . 

This explicit solution of (LP) -explicit in the sense that  A- b   is an 

explicit solution of   Ax = b    - has obvious theoretical (and possibly computa- 

tional) advantages over the well known iterative methods of linear 

programming,  e.g.   [5],   [8]. 

The results are illustrated by a simple example, and extensions to 

general linear programs are discussed. 

Preliminaries and notations 

We denote by: 

R     the n-dimensional real vector space 

For any two vectors   x, y   in R   : 

x   r y   denotes   x. i y.        (i = 1,. . . , n) 

—'   For other applications of generalized inverses in linear programming 
see [14] ,   [7]   and    [6] . 
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For any subspace   L   of   R  : 

L ■L   denotes the orthogonal complement of   L 

PT    denotes the perpendicular projection on   L 

For any   mxn   real matrix   A: 

T 
A     -- the transpose of   A 

R(A) -- the range space of   A 

N(A) -- the null space of   A. 

For the fixed   mxn   real matrix  A   consider the 4 matrix equations; 

(1) AXA = A 

(2) XAX = X 

(3) (AX)T=AX 

(4) (XA)T=XA 

We denote by   Afi,j,...,kl   the set of   nxm   real matrices   X 

satisfying equations (i),   (j),...,^),    (I S i, j,... , k ^ 4) .    These sets 

A [ i, j,. . . , k] ,  (1 < i, j,. . . , k ^ 4),  are nonempty because   A {1,2, 3, 4}   is 

nonempty,   e.g.   [13] . 

A matrix   X e A { i, j,. . . , k}   is called an   f i, j, . . . , k]    - g. i. 

(generalized inverse) of   A.    The    {1,2,3,4}    - g. i.   of   A    is unique,  and 

is the wf i.l known Moore-Penrose generalized inverse ,   e. g.   [ 13] ,   [ 12] , 

denoted by   A    .    For some applications a weaker g. i,  will do, e.g. 

[3] ,   [4] ,   [11]   and [10] .    Thus for solving linear equations (and for 

the purpose of this paper)    f I]    - g. i's are sufficient,  as shown by the 

following: 

Lemma 1   ([3] ,   [13] ):   The linear equations 

(5) Ax = b 

are solvable   iff for any   TeA   {1} 
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(6, ATb^b, 

ilL^ich_casJe the^eneral solution of (5J isj 

(7) 
x = Tb + (I - TA)y ,  y arbitrary Q 

The set   A f 1}    is represented in terms of one of its elements as follows: 

Lemma 2 ( f 3]) :   Let  R   be any   fl] - g. i.  of  A.    Then 

(8) 
M 1} = fRAR + Y - RAYAR : Y arbitrary 

nxm real matrix  } 
Projections associated with   g. i's are given in: 

Lemma 3 ([ I] ) : 

(a) If_    S e A  f 1,3}    then 

,9) AS = p
R(A) 

(b) If      TeA  [1,2,4]   then 

(10) TA = p 

R(AT) 

A recipe for computing   a { I] - g. 1.  and for constructing a basis of 

N(A)   is given in: 

Len"na 4:  ^   A   ba^a mxn   real matrix of ^   r , ^^^   E   ^_ 

nonsingular   mxm   real matrix s^ch that- 



(11) EA  = 

(m-r)xn 

where   P   is a permutation matrix. 

Conclusions: 

(a) Let   E   be partitioned 

(12) 

then the   nxm  matrix 

E = 11 
f-- 
"21 

"12 

'22 /    where   E..   iB_ rxr 

(13) T = P 
Ell    1     E12 

(n-r) x m 

is a    f li 2} - inverse of  A . 

(b) The columns of the   nx(n-r)   matrix 

T        -A 

n-r 
(14) N = P 

form a basis of   N(A) . 

Proof; 

(a)   Consider the   nxn   nonsingular matrix 

(15) F = P T        4r -A ..... 

n-r 

From (11).  (15) and   PPX  = I  we get 

or 

EAF = '.jo 
6 ! b 



(16) 

Now the matrix 

A =E" 
0 

0 

(17) T = F      ----?-'-.-     E 
V OjO/ 

is a    [ I, 2} - g. i.    of  A, as  shown by substituting (16) and (17) in (1) and (2) . 

Substituting (12) and (15) in (17) we get 

_ r 
"o" 

} ^-r, lo 

= p- 5il^l2 

which proves (13) . 

12 

22 

T n (b) Obvijus from (U) and the facts :   PP    =1 and   E   nonsingular.      LI 

For other results and references on   fl} - g. i's see   [4] ,  [10] 

and [ I] . 

(LP) 

Results; 

Consider the linear programming problem: 

Maximize   (c,x) 

subject to 

(18) 

for given 

and assume; 

a ?Ax! b , 

A = (a..) .  a = (a.) , b ^b.).  c = (c.) 

(i = I, ...,m ;   j = 1 „) , 



rv'.""..'   

-6- 

Asaumption 1;   (LP) is feaaible,  i. e. 

(19) S={xeRn:a!  Axrb}/0 

The following properties of  S  are obvious: 

Lemma 5: _If_(l9) then 

(20) S = S + N(A) = {x + y : x e S, ye N(A)} 

and the set 

(21) P        TS=fP       Tx:xcS}    is bounded. 
R(Ai) R(A1) "     "    ~""~ Q 

The case when   (LP) has a finite maximum is characterized in: 

Lemma 6:   (LP) has a bounded optimal solution iff 

(22) c i N(A) 

Proof;   If:   From (22) and the fact 

N(A) = R(AT)a' 

it follows that 

{(c.x) : XG S) = f (c,x) : xc P      T S) 
R(A   ) 

and is a bounded interval,   since (21) is a bounded set. 

Only if:    Suppose   PN/A\   C/0.    Then the interval 

{(c,x) : xe S} 

is the entire real line,  by (20) Lj 

We make   now 2 additional assumptions: 
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A 8sumption 2;   (LP) has a bounded optimal solution, i. e.   (22) holds» 

Assumption 3:   The matrix   A   is of full row rank; 

(23) rank  A = m 

An explicit representation of the general optimal solution of (LP) is now given: 

Theorem:   Let (LP)   satisfy assumptions 1,2 and 3,  and let the   nxm matrix 

T   with columns (t,, t-,... . t    ) be a   f 1} - g. i.  of A.    Then the optimal     12 m     l   J     •a   e  

solutions of (LP) form the manifold; 

(24) x -  E   t.a. +  E t b   +   E   t. (9.b  + (1 - 0.)a.) + N(A) 
i€l_ 1 1   icl+ 

l X     iel0 
1    ' 1 1    1 

where 

I_ = fi: (clti)<0   J 

(25) I+ = {i ; (c.t.) >0   } 

I0 = fi: (Ct.)--*)   } 

and 0 S 9. S 1 ,     i e I0    . 

Proof:    From (23) it follows that 

R(A) = Rm 

so that for any  z   in  R      we have 

(26) z = Ax 

where 

(27) x = T z + N(A) , by lemma 1. 

Substituting (26),  (27) in (LP) we conclude from (22) that   (LP) is 
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equivalent to the following linear program over a parallelopiped; 

Maximize (c, T z ) 
(LPP) 

subject to 

(28) a ^ z 4 b 

whose optimal solution is obviously: 

a. ie I 

zi s       bi ieI
+ 

e.b. + a-e^a. iel0 

for any 0 < Q, < I       , iel      . 

From (27) and (29) it follows that the manifold (24) is the set of 

optimal solutions of (LP).     . n 

Remark;    It can be shown directly that the set (24) is independent of the 

particular { 1} - g. i. used in its definition.    We need: 

Lemma 7:   Let   A   be an mxn matrix of rank  m , and let   T   be any 

{ 1] - g. i. _of  A.    Then 

(30) T = A+ r W 

where   W   is a matrix whose columns lie in   N(A) . 

Proof:    Lemma 2, with   R =A    , the unique    {1,2,3,4} - g. i.  of A,  gives: 

(31) A {1} = A+AA++ Y - A+AYAA+ ,     Y arbitrary 

A    + PN/A\ Y    ,    Y arbitrary 
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This follows from   A+AA+ = A+     by   (2) , 

AA+ = PR(A)     '    "V   <9' ' 

= I     ,    since   rank   A = m 

and I - A+A     = I - P       T     .by (10) , 
R(A1) 

= PN(A) * 

Now (30) follows from (31) with   W = PN/A) Y . r 

From lemma 7 and (22) it follows that the sets   I ,  I ,  I     defined 

by (25) and the general solution (24) are independent of the   f 1} - g. i.  used 

in the theorem. 

Example; 

The pi-oblem, of class (LP) ,  is: 

(32) Maximize   2x. - x_ - x_ + 3X- 

subject to: 

0 < x1 + 2x    - x3 < I 

- 3 < -x, + x,     - x. SO 
1 3 4 

1 s 2X, + x, - 3x-   + x. < 3 
12 3 4 

V/e use lemma 4 to compute a    f l] - g. i.  of 

12-10 
A =   | -1       0 I        -1 

2       1-31 

by diagonalizing the   m x (n + m) matrix 

A<°'^,Im, 
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(0)  . 

(I) 

(2) 

(3) 

®  2    -1     0 
-10     I    -1 

2    1-31 

I       0      0 
0      1       0 
0      0       1 

12-10 
o (D    0-1 
0-3-1     1 

1       0      0 
1       1       0 

-2       0      1 

10-11 
0   1      0 -1/2 
0   0   Q) -1/2 

0    -5/2-1 
1/2   1/2   0 

-1/2-3/2-1 

10    0      3/2 
0   1    0    -1/2 
0   0    1       1/2 

1/2-5/2-1 
1/2   1/2   0 
1/2-3/2-1 

pivots are 
circled 

Assumption 3 is satisfied if the last matrix  A is of the form 

A(m) = ((I   .  MP f E ) m 

Indeed from Ax     we read (3) 

(33) 
/   3/2\ /   1/2    -5/2      -1 

A =       -1/2        .      P = I    .     E =        1/2      1/2 0 
\   l/2 / V   1/2    -3/2      -I 

and by (14) it follows that   N(A)   is spanned by the vector 

(34) 
-3/2" 

and that assumption   2   is satisfied for    c = 
f  2 

-1 

\1 
From (13) and (33) we get a    {1} - g. i.  of  A: 

(35) T = 
^ 

-5/2 -1 
l^ ^ 

0 
1/2 
0 

-3/2 
0 

-1 
0 
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for which 

= (0,  -4,  -1) 

so that 

(36) I_ = [2,3] , I+ =^,    I0= {1}   . 

The general optimal solution of (32) is from (24),  (34),  (35) and 

(36): 

(37)      x =       e1 

with 0 < 9. ^ I 

and \   arbitrary   . 

The optimal value of   (c,x) = 11. 

A different choice of pivots in  A1 ' (i = 0,1,2)   could result in 

different matrices in (33) and (35), but the sets (36) and the manifold (37) 

are unchanged. 

Discussion 

Linear programs arising in concrete applications are usually 

feasible and possess bounded optimal solutions.    Therefore assumptions 

1 and 2 are not too restrictive. 

Also any linear program with inequality constraints can be 

rewritten as our problem (LP),  by setting the missing : a. and   b.   as: 

-M   and   +M   respectively, where   M > 0   is a sufficiently large number. 

(If   M   appears in an optimal solution, theu the problem has unbounded 

optimal solutions). 

^^^^^^MMHMM 
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The remaining assumption   3   is a true restriction on the scope 

of our method.    It is typically violated by linear programs of the form: 

Maximize   (c,x) 

subject to 

(38) Ax   <b 

x   5-0 

which are rewritten as our (L.P) : 

Maximize   (c.x) 

(39, f-^Wl     HfM.)     (l 
where   M > 0   is sufficiently large,    and 

1 

There are several ways of applying om method to problpm« (J-P) 

without assuming A to have full row rank. One possibility is to partition 

(LP)   as follows: 

Max   (c,x) 

(40) a1  f   A^   =   bl 

2   <   .2      <   . 2 a     5 A    x   5   b 

where   A     is an   rxn   submatrix  of the   mxn   matrix   A   and 

(41) rank   A    = rank A    =   r   . 

From (41) it follows that 

(42) N(A) = N(Al) 

and by lemma 6,  problem (40) has a bounded optimal solution   iff 
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(43) c   i   N(Al)   . 

The subproblem 

(44) Max   (c.x) 

a1   *  Alx   %  bl 

thus satisfies our assumptions, and (24) can be used to obtain the manifold 

(45) xl + N(A) 

of optimal solutions of (44). 

Any vector in (45) which satisfies the remaining constraints 
2   <   A2     <   u2 

a     §   A  x   =   b 

of (40) is clearly an optimal solution of (40).    In the absence of such a vector, 

an optimal solution of (40) can be found in a finite number of iterations, where 

at each iteration  A     is changed by one row in an obvious manner.    Our 

method may thus serve as a start for a dual simplex method. 

Another possibility is to partition   (LP)   into   k   subproblems 

Max     (c,x ) 

(46. i) a1   S  AV   ^  b1 (i = l,...,k) 

where each subproblem satisfies our assumptions   1   and   3 .    Since 

assumption   2   is assumed for   (LP) , we solve (46. i) by (24) as if 

c i N(A )   ,     i - 1,.. . , k.      The resulting optimal solutions are generally 

different, but may be forced to coincide in a finite number of iterations of 

the decomposition method of Dantzig-Wolfe   [ 9] .    These results are 

contaired in   [15] . 

wamam 
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lfled DOC user• ahall req u t u.rou~h .. 
--------------------------------------- . If the report haa bae~t f11tniahed to tht O i!lc: " of Tec:hnic r!l 

lerricea, Deportment of Commerce, for salu :. ~ l:e public:, lndl· 
cata thla fact and e nter the price, if known. 

IL IUPPL£.\-IENTARY NOTES: Us" for odc!l !i.,n3l e x;-laoa· 
tory f\1) t•• I 
12. SPONSORING MILITARY ACTIVITY: Enter the nar.\e or J 
the departmental pr~Jject office or l e~rato r y lOponsorl l l (~ay- JJ 
lt141 lor) the ruaarcil and development. Inc:! d., ;od~~i!lo 

u. ABSTRACT: Ent~r an aba trac:t ~Yil11 ~ bri~ f and fac:IY:al 
aUIII-fJ of the documen: lndlcativ of the r ort, avca thou&h ! 
1t may a lao appear elsewhere In the b()dy vC t iu• tt: c:hnic:al re · . ~ 
port. If additional apece la required, a con t1nu.1 tion ah.et ahall ~ 
be attached. 

It 1• hiply deai.rcoble thlt the abHract of .:!asaHied taFOrta 
be uncleaalfied. E1c:h pararnpl\ of the abs.rac:t that: e r.d Vl! th 
an indication of the military aec:ur1cy c:la uifi ~ ation of th~ in· 
formation in the pa ralf'Apb, rapre :~entod ·•a (T:;) , (SJ , (C) . or (U) . 

11wra la no limitation on the len•th of t. • abatrac t . llow· 
aver, the auueated leacth ia from 150 t~ 223 words. 

14. UY WORDS: lte)' worda are technically maanin;f\11 term• 
or abort phraaea that dtaraetertze a report a:td m1y be used a1 lad•• eatriea for eataloclnc the report . ltey words muat ba 
Hlacted eo that no aecurity elaultlc: aUon h required. ldenU· 
flora, suet! ea equipment model de 'lia:naUon, !rade n1me . military 
project code name, ceocnpfllc loc:ation, m:ay be used •• key 
words but will be followed by en indi~ation '> ( teo:hnlcal c:on· 
te•t. The asaiiiJllllent of Unka, ralea, and we t6bl• b o~=otional. 

10. AVAU.ABILITY/LI~TATION NOTICES: Enter any 11- 1 
.&tatlona oa further disaelllinatioa of L'w report, other than thoae1 

~D~D~-,~-~-~-.-1-4~7-3~(-B~A~-~C~K~)------------~~----=::::~-u=-nc-la:;;~i ~d __ --_____ _ 
Security Classifica ticn 


